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THEORY OF NOISE IN A MULTIDIMENSIONAL SEMICONDUCTOR {
WITH A P-N JUNCTION i

I

1

Prepared by:

Max Solow

ABSTRACT: This thesls discusses the fluctuations of noise

in a two and three dimensional semiconductor containing a

r-n Junction, We conslder a rectangular parallelepiped

single crystal. It 4s bisected in the longesi dimension by

a p-n junction, Since this dimension 1s several diffusion

lengths 1t can be consldered infinite. 1In the transverse I
plane we investigate the case where both dimensions are !
finlte, and then the case where one 1s finite and the other ;
infinite. In the p-n junction the nolse is the result of
fluctuationa in the minority carrler density. In a p-n
Junction there are two classes of minority carriers: 1.
holes in the n-type material, 2, electrons in the p-type
material. Since both hole and electron density fluctuations
are similar, we dilscuss only the former in detaill., We
investigate the differentilal equations for a two and three
dimensional semiconductor with a p-n junction and find the
inhomogeneous form of these equations. These equations are
solved with the help of the scalar and tensor Green's
function., The noise problem is solved by usling these
equations as Langevin equations and interpreting the dis-
tributed sources as random forces. Then the nolse current !
apectrum 1s determined with stochastic process theory after

deriving the sources from basic physical models and the

theory of stationary, ergodic, Markovian processes, We

U, S, NAVAL ORDNANCE LABORATORY
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consider two cases of surface recombination velocity on the
transverse surfaces: infinite s and finite s, For the
infinlte case, we get the exact solutlon which provides an
upper bound for the noise spectrum for large s. For an
arbltrary s we get a solution but have confidence in the
solution for only small s,

Therefore we have obtalned a complete solution for +he two
cases of practical interest: large and small surface
recomblnatlon veloclty. These cases should prove of interest
in the analysis of nolse phenomena in semiconductors.

11
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‘this report describes a theoretical study of the fluctu-

ation noise from a two and three dimenslonal semiconductor
with a p-n jJunction. It was carried out as a thesils

problem with partial support from FR-21, The report is
for information only.
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CHAPTER I
INTRCDUCTION

Semiconductor nolse studles glve useful
information about the basle physical micros-
coplc processes irn semiconductors and in the
solid state, Furthermore, nolse becomes very
inportant when a semiconductor device such ag
a transistor 1s used with slgnal levels com-
parable to the noilse.

A semiconductor crystal which 1s p-type
at one end and n-type at the other has a
transitiog zone whlch 1is called a p-n Junction
(Shockleyt, 1ttelé) Current is carried
across the‘pnction by minorlty carrlers; that
is, electrons Iin the p-type reglon and holes
in the n-type rsgion.

Petritzl»? has shown that nolse in a
p-n Junctlon arises from fluctuations in the
concentration of minority carriers. Consld-
ering a p-n Jjunctlon as an ideal one dimen-
sional structure, he has deriged expressions
for thils nolse. Van der Zlel- has extended
the solution to the one-dlmensional p-n-p
transistor structure, In both studles the
effects of surfaces were considered in an ap-~
proximate manner.

' However, surface condltions have heen
found to influence markedly the performance o
p-n Junction diodes and translstors (Klngston®).
Conslderable theoretlical work has been done to
understand the signal properties (voltage, cur-
rent, frequency relationsg of p-n Junctien
devjces, consi$ered as three- digensional sbruct-
ures (Shockley Van Roosbroeck It 1s the

b




purpose of thils thesis to develop a theory of
nolse which conslders the p-n junction as a
three dimensional system, and which treats the
effects of surfaces In an exact manner.

A second obJjective of the thesis is to
test and extend a powerful method developed by
Petritz3,4 for studylng complicated random
processeg. This aspect of the work 1s of inter-
est in the peneral theory of random processes.
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CHAPTER I1I
PROBLEM AND METHOD OF SOLUTION

2.1 Introduction

We assume that semiconductor noise 1is a 3
stationary, ergodic and Markovlan random process,
Considering the local hole density, pg(x,y,z,t).
as a random variable, thils 1s a three-fold infin-
ite random process. In order to solve such a
compllicated problem, we have generalized a method
used origlnally by Petritz.” This method employs
the Kolmogorov--Fokker-Planck (KFP) and the
Langevin techniques_to describe the noilse (Fei-
lerd, Chandrasekhaiio, Uhlenbeck and Ornsteinll,
Wang and Uhlenbeckt?)

2.2 The Kolmogorov-Fokker-Planck Equatlon Approach

The KFP equation312 for the three dimensional
semiconductor are given by
’.:_:_,""‘o eHmm IS t ) - P (m-u‘)l m«,) ’t) 2 th(v” K (‘[\‘)
KKt )

+&ggn.\r)\l((m,t) Q)| m@) .

P(m,/m,t) is the conditional probability of
finging the random variable with a value m after
the time t, If at zero time the random varilable
had a value mgy. The random varlable is the hole
denslty in the n-~type semiconductor. The symbol
r represents r(x,y,z), a function of the three
rectangular coordinates. % 1s a transition
probabllity and 1s defined”’ by the equation,

P\, at) = Qkim)at + order(at)™. (2)
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Q describes how the system changes 1In an infin-
itesimal interval of time, At, and characterlizes
the stochastlc process. For the semiconductor
problem, Q@ is lndependent of time and the pro-
cess 1s stationary. Q 1s non-zero and less than
unity and the process 1s ergodic.

The interpretation of equation (1)} 1= that
the rate at which the conditlonal probabllity
P(mo/m,t) changes with time results from transi-
tions away from and to the desired state. Equa-
tion (1) is subject to the boundary condltion

Pm.jm.0)= B, m 5 (3)

where &, .le the Kronecker delta,.

Since a random process 1s characterized by
trangition probabilities, we list them for the
p-n Jjunction:

QSmlr)\mﬂ-\)=m(r)/< . bulk recombination; (%)

C.\‘(in(r)\m(r)ﬂ):(m\r))/q: , bulk emission; (5)

£ 6

Qp(m\\r‘)|'rn(r)~\)= me /Ty, putk gici‘éiig? (6)

%m(r)\mtr\+l)=(m(r))/<n, bulk diffusion (7)
increase.

At the transverse surfaces, the surface transi-
tlon probabllltlies are

Qi) mi-Y= miy/z, , surface recombin-  (8)
s atlonj

meuﬂ\mhgﬁﬁ)=<uﬂ@%/cs, gurface emlssion., (9)

r, denotes that the random varlable 1s evaluated
only at% the surface; 7 1s the bulk recomblnation
lifetime of a hole 1ln an exclted state; 1 and
Tg deslignate the lifetime of bulk diffusion

and surface recomblnatlon respectlvely;

5
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and () deslgnates ensemble average. For a
statlionary random process, time and ensemble
averages are equal,

The KFP equations with the set of transi-
tion probabilities given in equations (1) and
(4) to (9) comprise a three fold infinity of
differential equations, since p{rt) depends
continuously on x, y and z. We have not solved
this complete set of equatlons, but we later use
some KFP equations to solve the noise in an
infinitesimal region of the semiconductor,

2.3 The Langevin Equation Approach

The Langevin equatlon 1s a deterministilc
equation Sf a system excited by random noise
sources, ! For a particle in a viscous medium
it is

¥ +Bu=AW), (10)

where U 1s the veloclity of the particle, f 1is
the viscosity, and A(t) is the random force.
The two assumptions made are that A(t) 1s inde-
pendent of u and that A(t) varies extremely
rapidly compared to the varlation of u,

By generalizing the above concept we have
a sultable method for solving the p-n Jjunction
noise problem. . The determin%stic equations for
minority carrier flow are;ls

ARt 1) -Py > =
J1J+QQQ ¥ L F)E0=0

3t (11)

—3(7‘.'1): QAP ) E (rt) - qDﬁp‘ﬂn‘c):—pVPt(".Q-(lg)

The subscript t denotes the, total hole density,

3 1s the current density,E 1s the electric
fleld intensity, p.nt) is the hole concentration
at PXy7) at time t, 4 1s the hole mobility, P,
ls the hole concentration at thermal equilibrium,
T 1o the mean Litetime of a hole 1n bulk n-type

5
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semiconductors, D is the diffusion constant. and
q 1is the electronlc charge, We assume that the
diffuslon current 1s much greater than the con-
ductlon current. By introduclng appropriate
noise sources into the above equations we have
the three dimensional generallzation of the
simple Langevin equation (10):

3pint) m,t) J.F--?(T‘,t) = S (T‘,t) .

v

*, -
J¢r,b) +c_1Dvp=5,,(P,’C). (14)
S, and §b are nolse sources. The variable p is
tﬁe deviation of the hole density from lts equil-
ibrium value, like Eq, (Bl). (A letter preceding
an equation number indicates the appendix in
which the equation 18 found.)

It is important to note that there exists
no a priorl knowledge of the noise sources;
thelr solution 1s a key part of this work.
After finding expressions for these noilse
sources, we solve the deterministic Eqs. (13) and
(14) and find the noise spectrum of the p-n Jjunc-

tion. The latter step involves the use of scalar
and tensor Green's functlons.
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CHAPTER III

THREE~-DIMENSIONAL NOISE SOURCES
FOR A p-n JUNCTION

3,1 Introduction

It 1s necessary {o derive explicilt
expressions for the noise sources appearing in
equations (13) and (14). We consider the anal-
ogous but considerably simpler problem of a
one~dimensional transmission line,

3,2 The Inhomogeneous T{ansmission
Line Equationsi’

The homogeneous dlfferential equations
for a one-dimensional transmisslon line with no
series Anductance are

ty aV(x,t) _ '
%Ii(x, ) - - C T GVxY ,

uﬁi"’t\ = -RIxb . (16)

I 18 the current flowing in the line; V 1s the
voltage across the line; C, ¢ and R are the
capaclitance, shunt conductance and resistance
per unlt length of line respectively. An 1infin-
itesimal section of line is shown in E&gure 1,
page 8. Taking the Fourier transform ~ of the

voltage and current (either represented by F) we
have

(15)

F({)= f: F@) explwt) af . (D)
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3L L _(1wC+QV=-1V, (18)

3%
N/ax=-R1 (19)
Y:1WC+G ? (20)
w=omi . (21)

I and V are functions of frequency, £, and
position, x.

We now consider voltage and current
sources (generators) in the line; the total
source in the serics arm ls AVO(K§VAx,while
in parallel with the admittance Y 1s a current
source AIL,(xf)/Ax. In the limlt as Ax ap-
proacnes zero, we have

B S TSN B
AT AX ax
where Fo(x,T) represents elther Vg(x,f) or

Io{x,£). The resulting inhomogencous trans-
mlssion line equations are

22)

Qv
—

A (23)
%,\)[(+P\1=~%y5{ . (24)

5.5 Analogy between the Transmlssion Lilne
and the One Dimenslonal p-n Junction

The three dimenslonal p-n Junction, Eqs,
(13) and (14), reduce to one dimension when the
functions considered are constant in the y and
7 dlrectlons, Using Fourler transforms,kqs.
(15) and (l4) become




. Tl ____9"

S (25)
s A7,

By - A (26)
K= (Lriod)De . (27)

Here J and p are functiong of Lreguency and x.
The quantities in Egs. (25)and (26) analogous
to those in Egs. (23)and (24) are

v 5 VP s (28)
Y~ i+ s R~ VqD; (29)
al,/ax~ ajpfor (30)
aV,/ox ~ 3p.[o% . (31)

3.4 The Three Dimensional Inhciwgeneous
Differentlal Equations for a
Semlconductor with
a p-n Junction

Since the current denslty is a vector and
the excess hole denslity 1s a scalar, there are
four more equations like (25) and (26) for the

y and z directlons, These s8ix equaticne can be
wriltten as

1+ PKp=-Vp (32)

(33)
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When the variables are separated, we get

(34)
(35)

(36)

(37)

3.5 Discussion of the Random Noilse Sources

In the first order differential equatlons
(32) and (33) there are two sources of nolse:
v and Vp.. The first 1s the dlvergence of
the hole current and 1s a scalar source., This
is due to hole recombination with electrons,
The second noige source 1s the gradient of the

hole density, Vp. , and 1is a vector source.

diffusion current denslty 1is proportional to V.,

The

and 1s 1n the direction from greater to lesser

hole density.

In addition to the above nolse sources
there are sources which result from the recom-
blnation or emlssion of holes in surface states.
This nolse is related to the flow of holes into
the surface and 1s directed normal to the sur-

face, , ,
The modlfied noise sources, Sp and Sn
Eqs. (35) and (37), are not new sources but

result from mathematical operatlons on the physi-

cal sources.

>

3.6 Method of Derilving the Nolse Sources

We derive expliclt expressions for the
nolse sogrzes {ollowing the method flrst used by
’

Petritz,
solve for the apectrum of the nolse in an

11

This method uses the KFP equatlon to
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infinitesimal region of the semlconductor,

Then an appropriate deterministic equation

wilth unknown noilse sources 1s sei up for the
same infinitesimal region (local Langevin
equation). Knowing the spectrum from the KFP
solutlon, one 1s able to derive expressions for
the nolse sources appearing in the local Lange-
vin equations. These sources turn out to be
appropriate for use 1in the Langevin equatlons
of the whole semiconductor, Eqs. (34) to (37).

3.7 Mcdels Used for Determination
of Noise Sources

The determlination of the noise sources
1s simplified because of the assumption of
statistical independence of the various elemen-
tary processes. To set up a model whilch solates
each source, we cut the three dimensional semi- |
conductor Into infinltesimal cubes without [
changing thelr hole density, and apply the appro- !
priate boundary condltlions. For recombination . ;
the cube 1s an lnterior one with perfectly
reflecting boundaries, The charge density
remains uniform throughout; the only decay is
due to the bulk recombination time constant
slnce diffusion currents require gradients.
For the bulk diffusion sources the cube
1s an interior one wlth perfectly absorbing
boundaries on two opposite faces and perfectly
reflecting boundaries on the other faces., The
volume 18 so small that the concentration grad- '
lents cause large diffuslon currents whlle
relatively few holes are lost by recombinatilon. \
For the surface recombinatlion noise source,
the cube 1is at the surface of the semiconductor,
Its dimension perpendicular to the surface is
very small compared to the others and the bound-
aries are perfectly refliecting except for the
original semiconductor houndary. In this sur-
lface element the dominant process 18 recombina-
tion and emission from the surface atates,
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Because of the thinness of the elemert, bulk
recomblination and diffusion are relatively
unimportant.

3,8 The Bulk Recombination Noise Source

The excess hole density Langevin equatlon
for bulk recomblnation and emlssion 1s obtailned
from the model in Section 3,7 and from Eqs. (10)
and (13),

T

The random force 1s 537& . The time constant
for bulk recombination ¥ determines the transi-
tion probabilities,

2 + =23, (38)

Q. (NIN-D=N/=, bulk hole-electron (39)
recombination;

QY.(NlN"' ])=(N>//'t ) excitation of a (40)
hole,

Here N and {N) are the total and the average
number of holes in the cube respectively. The
minorlty charge density 1ls assumed uniform over
the volume v of the cube, thus

N=V'Pt. (41)
Substituting these transitlon probvabllities into

the KFP equation (1), we get for the small vol-
ume under consideration,

PO = PG [T pON-LY M ()
+P(N,INH,t) [N |

Multiplying equation (42) by N, the number of
holes at time t 1f N, exlsted at the Inltlal
time. and summing over the ensemble, there
regults

13
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alN), at=-MN)/< (43)

NL=N~ (N) s (44)

and where the condltional average for N is
defined as

NL=ZPININD N. ()

The solution of equation (43) is
M), =N, explt/<) (46)

where N,  1s definéd with the aid of Eq. (3) as
N9%,=N,, , t=0. (47)

This conditional average 1s transformed
into the correlation function using’?

with equation (45) this expression becomes

P(ﬂ =$ Nlo W (Nt.o) <N1>e . (49)

W(N1g) is the probability of Njg. When Eq. (46)
is substituted into (49), the correlation func-
tion bacomes

o(t)= NEY exp(-t/"-') . (50)

The Wiener-Khintchine Theorem’ transforms
the correlation function into the spectrum

14
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w(ﬂ=4£wp(ﬂ coy wt At , (51)

When equation (50) is substituted into equation
(51) and the result integrated, there results

W = & (VL) /<KD", (52)

K? 1s defined by Eq. (27) and the symbol || means
absolute value,

Equation (52) 1s the spectrum of the total
hole variation. However, we desire an expres-
slon for the noise source which appears in the
Langevin frequency equation (34). We can solve
for the spectrum of the source now that we have
determined the spectrum of the total hole varla-
tion., This is the inverse of what is normally
done with the Langevin equation. The normal
procedure 1s to postulate a white noise source
and to solve for the fluctuations 1n the total
hole density. The magnitude of the white noise
source is determined by considerations of statls-
tical mechanics and thermal equilibrium, Since
we are interested 1n non-equilibrium as well as
thermal equilibrium. noise sources, we cannot
use this normal procedure. Instead the local
KFP equation 18 used to determine the thermal
equilibrium and nonequilibrium spectrum of the
total hole variation, and the nolse sources
derived have general validity. This combined
use of the KFP and the Laggevin methods locally
was first done by Petritz’ and appears to be a
powerful technilque for solving complicated ran-
dom processes,

We use this technique to transform the
spectrum of the total hole variation, Eq. (52),
into the nolse source assoclated wlth the recom-
bination dissipative process. This is done by

integrating equation (38) over the volume of the
cube; inserting

15
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N,=Jppav , (53)
where p,(r) is like pl(O), Eq. (B3); using

1= @) av ; (54)

and using Eq. (17). This ylelds

(X
Ip:: qDK N . (55)

The spectrum of Ir is

w(lT)) = PDIKY wlNS). (56)

Equation (52) substituted into Eg. (56) obtains

will )= kg AN/ (57)

This 1s the nolse source associated with the
recomblnation dissipative process. 1t is inde-

pendent of frequency and therefore ls a white
nolse source,

Equation (57) is not the recombination
nolse source in equation (35). This source is

w(id \) = w,(l?{f*l‘) : (58)

A relation between Eqs. (57) and (58) is
determined with the equation

im. Irz 9.3
Lim, &= V'
and the generallzed impedance theorem.

16

(59)
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The impedance theorem (Lawson and Uhlen-
beckl5) states that by multiplying the current
noise spectrum w; in a linear system by the
absolute value sguared of 1ts lmpedance function,
Z2(f)z*(r), wy is transformed into the voltage
spectrum wg. In symbols

W, = Wy ZZ¥, (60)

We generalize thils impedance theorem by
letting wi and w, be any two spectra in a linear
e

system which areorelated by a factor of propor-

tionality 2Z(f)Z*(f).
The explicit expression for the recombin-
atlon source spectrum is

w81 = & ANJY/<D” av. (61)

To express the recombination source, Eq.
(61), 1in known parameters, (N® 1is evaluated
by multiplying Eq. (42) by N* and summing; the
result is

3N - ¥ (N) = 2N, + (N, /e
240 < (.00 (0, + ) )% (62)

When the time of observation of N goes to infin-
ity,

(K= N - iy = O (63)

since

(N, = {N). (64)

= -

With Eqs. (63) and (41) Eq. (61) becomes

W(\Sp\"): 4.(]')t(1'))/(tD2 dv).. (65)

17




NAVORD Report 5762

where {p(r)? 1is given by Eq. (Bll). This 14
the desired noise source for bulk recombination.

3,9 The Diffusion Noise Source

Solving Egs. (13) and (1l4) for p,
letting S, be zera and using the model for the
diffusion noise source, Section (3.7), we get

3 2
F-oL7R=5% (66)

where x4 18 x, y, or z, We assume that diffusion
in the three directlions 1s statistlcsally inde-
pendent. Equation (66) becomes a set of three:

2
R -DFR=Sp, (67)

where u stands for x, y or z,

To write equation (66) in the Langevin
form, the spacial term 1s transformed to contailn
a time constant. We write the second derivative
for the finite but small cube and use the densi-
ties

POI=0 o pAW=0,pAR)=p. (48)

In this differentiation the diffusing direction
is u and the length of the cube in this direction
18 Au., The second derivative is

3p __ =2
e (69)
and equation (67) becomes

R+E,= 5 (70)

18
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where Ty = AUY2D , (71)

With these time constants the transition
probabllities for the u direction are

Qou (M Ng ) =Ny/t sy , loss by diffusion; (72)

Qou (YN, +1) =N>/Tpu , gain by diffusion. (73)

Here Np 18 the total number of holes in the cube
with d?mensions Ax, Ay, Az and with the diffu-
sion boundary condltions:

Ny=fp av= A% Ay AZ P/2 .- (74)

Using the techniques of the previous sec-
tlon, the noise source for diffusion 1n the u
direction 1is

W(Seal?) = IK* 4 d Deprn/ax ay an . (75)

3.10 The Surface Recombinatilon Noise Source
With the model for the surface recombina-

tion nolse source, Section 3.7, the Langevin
equation (10) becomes

%_%‘lﬁ-%ii:i:jii_. (76)

The Pigp 1is evaluated at the semiconductor
boundary and the ji; 1s the current flowing in
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thr direction normal to the surface 1. These
surface recombination time constants define the
transition probabilities:

Qg (NelNe=1) = Ny /s (77)
by recombination at the surface
Qe (N, Ng +1)= <¥/Tg

by emission at the surface .

(78)

Ny 1s the total number of minority carriers
evaluated at the surface 1f the surface layer
were Axjy thick:

N‘S-_-_ IPIB‘ d_v‘-_- AX3 Axi A'xupjs . (79)

Using the techniques demonstrated in Sec-

tion 3.7, the surface recombination noise source
is

w, (13 \) 4(]%,)8/3 ax dxx, (80) -

where 1 and k are elther the palr y, z or 2z, Vs

s 1s the surface recombination velocity and is

assumed to be the same on the y and z surfaces.
The relatlon for the surfaig recombination vel-
oclty is given by Rittner,

§;= Ts[BXi - (81)
The rate of surface recombination acts as if a
current of holes were drifting into the surfaie
wlth an average veloclity s and belng removed.
3,11 Noise Source and p-n Junction Equations

The two bulk sources in equations (65) and

20
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(75) are expressed per unit volume. Since the
differential equations are for a small volume

of the three dimensional semiconductor, the noise
sources are in the correct form., That these
sources correspond to physical processes was also
shown by analogy with the transmission line,
Section 3.3,

When the varlables are separated in the two
first order semiconductor equations, spacial
differential operations are performed on some
of the nolse sources. This changes thelr nature
from those calculated in Sections 3.8 and 3.9,

In the equations for excess hole density (34
and (35) the nature of the recombination source
S, 18 not changed and these equations can be
solved for the recombination noise spectrum,
However, the diffusilon source Sp haF been dif-
ferentiated spacially and becomés S, By using
the vector analogue of integratlon by parts, the
diffusion nolse source transforma to the correct
form, This technique is used in Chapter VII.

In the diffusion current density equations
(36) and (37) the diffusion source is still Sp.
These equations can be solved for the diffus?on
nolse spectrum with the tensor Green's function.
This approach is followed in Chapter VI.
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CHAPTER IV

SCALAR INHOMOGENEQUS SEMICONDUCTOR EQUATION
AND GREEN'S FUNCTION

4,1 Formal Solution of the Scalar
Inhomogeneous Equation

Having derived explicit expressions for
the nolse scurces, we conslder the inhomogeneous
differential equations for the semlconductor with
a p-n Junction, Egs. (34) to (37). Greent's func-
tions are useful for solving inhomogeneous partial
differential equations, In our problem we use
both scalar and tensor Greent's functions, the
latter because of the vector nature of the
sources in Eq. (36). A summary of the proper-
tles of scalar and tensor Green's functions is
given in Appendix A.

The formal solution of Eq. 534) in terms
of a scalar Green's function is,

oo SLGRpd - powd bt Sy G dv . (g2

Throughout the paper the zero subscript denctes
the source coordinates, while the coordinates
without subscripts are the observation ones,
The surface integral gives the contribution for
nolse sources at the surfaces, while the volume
integral is for the volume sources,

22




NAVORD Report 5762

4.2 General Discussion of
Scalar Eigenfunctions

We construct an explicit expressilon for
the scalar Green's function 1n terms of a series

‘of scalar eigenfunctions, An elgenfunction ls

the solution of an ordinary homogeneous differ-
entlal equatlion containing a separatlon constant
which satisfles simple boundary conditions. The
values of the separation constants which allow
the elgenfunction to fit the conditions are
called eigenvalues, In physics it 1s assumed
that the Dirac-delta functlon related to our
Green's functlon can be expanded in terms of a
complete, orthogonal set of elgenfunctions.

The orthogonality condition for a set of
elgenfunctions is

fFLmnFL'ﬁ n dv= 6"”"‘"‘ ’“"“7"]“,\11; . (8} )

Here §,... uwn 18 the Kronecker delta and L;

18 the normalization constant. The differen@gal
equation the elgenfunctlons of this problem must
satisfy is

2 -
v‘?. F:l'mn-\' KAN“ F;l'n‘n - O ) (84)
2
KlTn is the separation constant and specific

values of the separatlon constant for which the
above equation cen be solved are the eigenvalues,

4.3 The Eigenfunction Expansion of the Scalar
Green's Functlon for Arbitrary Surface
Recombination Velocity

The scalar Greenis function 18 now expanded
in a series of scalar eigenfunctions:

G = E\ma‘ﬂmnEmnh‘) * (85)
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This series 1s substituted into equation (Al3),
noting that the coefficients are not functilons
of r. Multiplying by Fewmw(), integrating over
the volume, and using Egs. (é}) and (84), we find

) F.tivu\ ) /l‘imnK’lL(ﬂﬂ“ (86 )

A pmn

I %
and G = ‘gﬂﬂmn(r;\ Eni\@) L)«'\""KM’“'“ 4 (87)

2 —~we 2 — A_-Q- 2 -Q-i_f- -
where Kigyme= B + Kaemn= Dt T mn* 5 (88)

This Greents function satlsfles the reciprocity
condition since it is symmetrical in the source
and observation cocordinates.

The semiconductor geometry 1is shown in
Figure 2, The p-n Jjunction 1s located at the
x=0 plane and the origin of coordinates lies
at the center of this face. The rectangular
parallelepiped 1s bounded by the planes x=0,
Xx=a, y=b, y=-b, z=c, z=-c.

The three dimensional rectangular coordin-
ate system is a separable system and the elgen-
functlon can be written as the product of three
factors:

Fon= BFoln - (89)

Each factor is the eigenfunctlon which satisfies
the boundary condition in one coordinate, Fur-
thermore Eq. (84) separates into three equations:

T
2k +KiR=0 , (90)

where r is any 1index, 1, m or n.

The boundary conditions 1ln the x-direction
are that pso at x=o0 and x=a. This implies an
ohmic contact et x=2 and short-circuited condi-
tions at the x=0 and x=a planes. The eigenfunction
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Flg. 2. The geometry and coordinate system for
the three dimensional semiconductor with finite
surface recombination velocity on the transverse
surfaces y=b, y=-b, z=c, z=-c. The p-n Junction
is at the x=0 boundary and an ohmic contact is
at the x=a boundary.
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whilch satisfies these conditlons is

F= sin 2AX/3 . (91)
On the y and z boundaries current moving
into the surface 1s proportlonal to the excesas
hole density.l The constant of proportionality
is the surface rccombination veloclity s:
. - + =1 X
ju/q= 18P, “ ' (92)
The coordinate u stands for elther y or z and
stands for the y or z boundary surfaces, Using

the homogeneous form of Eq. (14), Eq. (92)
becomes

=1t

ap/3u=Fsp/d, V=TT (93)

Equations (90) and (93) have the following
solutions: In the y-direction the cosine and
slne eigenfunctions are

E.> cos Buy; G = sin fuy. (94)

In the z-direction the cosine and sine eigen-
functions are

F.* cos Bnz;Fy*° sin By (95)

The boundary condition, Eq. (93), becomes
for the cosine eigenfunctions:

Pt tam A= s'(/D ’ (96)

and for sine elgenfunctlons:
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< eot Bx =~ gx/D . (97)

The subscript r stande for either m or n, the
subscript p stands for elther 4 or ¥ , and
stands for either:b or +c, respectively. (The
word "respectively" in this expression means
that only the values (m, & , £b) or(n,¥ , +ec)
can occur together in the above equations) We
assume that the surface recombination velocity
1= the same for an opposlte pailr of surfaces,

Combining Egs. (91), (94), and (95) the
eigenfunctions for the rectangular parallelepiped
semiconductor are

Fn*“': ain ﬁ,&i §f§ (pMS) S::(ﬂ,.'&) ] (98)

where all possible sine and coslne comblnations
are taken. The symbols M and N stand for a y
or z index respectively. These elgenfunctions
are complete since they satisfy Eq. {gu) and
the homogeneous boundary conditions. The
scalar Green's function Eq. (87) satisfies the
same boundary conditlons as the elgenfunctions,
The eigenfunctions are orthogonal; from Egs.
(82) and (98) we find

SFJI!mnFJ.'Mn' av = L"’““ é“‘“ R (99)

and

jF.k,upF,‘Q',u'o" av = L‘/-“’ 63“"/]/'“"’" (100)
while any mixing of the m,y and n,» give a
null integral, Since the elgenfunctions are

separable we can integrate the various coor-
dinate integrals separately:

Lawn= Ll x (101)
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l -
J; qin ’%%— gin ‘—gﬁ dx = %g,a“" Ag,ﬁ' . (102)

o', (103)

in 28,
Lo pen o ot = 0B D=Ly s

in2be¥e =1”
R

f;dcosﬁ,u sinﬁ,u duz=0. (105)

The))r stands for m or n while p stands for «
or .

Substituting Eq., (98) into (84), the
elgenvalues are

L2 2
K = KoK Ko = @)t . (206)

If we let a, the x-dimension of the para-
ilelepiped, go to infinity, the discrete sum
goes over to an integral and can be integrated.
To carry out this limit operation, Green's func-
tion is written as

' n T2 a1
$” Fan(r) Freae & ; £ sn Z= 7T
: ' 2 + (10
q vzd L ./_..‘l a ﬁ"*'K:tMN (107)

The variables ¥ and A¥ take on the values %2
and T3, respectively, and are put into Eq. (107

)’14
When a goes to infinity, Eq. (107) becomes

o
Q- ‘%r. P (1) Fpant (1) gin YX_sin ¥X, d¥

fR L A 4 Kiaw * (108)
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When we integrate equation (108),. Green's
functlion becomes

. Z l‘FM_“-(T‘] Fuﬂ(r ny(-K Jg..x.“—ef_ ﬁ_\k-ﬂ.m
G=7

109
MNL Loax Arew (109)

Fax® =FaFs = (;:i P U) (523\/8,‘ 7) )

(11u)

Ll Pl g e gl

2 a2 i
-+ +ﬁ + = .
K; N DT AP D (112)

L is defined by Eqs., (101), (103) and (104)
by Eqs. (106) and 58 The plus signs

belongMgo the m,n indices, while the minus signs
to the y4,» indices. This i1s the desired form
for the scalar Greent?!s function for a rectangular
paralleleplped semiconductor when the x-dimension
goes to infinity. The assumption that a goes to
infinity means physically that the diffusion
length of the minority carriers 1s much less than
a. Therefore minority carriers injected at x=o
will recombine before they reach the contact at
x=a., Thls assumption is valid for p-n Junection
dlodes. In the case of transistors, a second
p-n Junction is at the distance a, and in this
case, the diffusion length is much greater than
a.

Our solution is therefore directly appli-
cable to p-n Junctlon dlodes; transilstors can be
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handled 1n the same general way, but a 1s kept
finite and the boundary condition at a 1is
changed., For simplicity we confine this work
to the p-n Junction diode and assume a 1s
infinivte.

4,4 The Eigenfunction Expansion for the
Scalar Green's Function f'or Infinilte
Surface Recombination Veloclty

Green's function for the case of infinite
surface recombination veloncity on the transverse
surfaces and zero hole density on the longltud-
inal surfaces 1s called the infinite s case. It
1s convenlent to change the coordinate system
from that of Figure 2 to that of Filgure 3, in
which the origin is at one corner of the p-n
Jjunection fape rather than at its center, To
designate that a symbol pertains to the case of
infinite s, we afflx the superscript ee to the
symbol,

On the lumgitudlnal surfaces the boundary
conditions are not changed. On the transverse
surfaces s is infinite. From Eq. (93), we get

Jﬂ_--ﬁ. =t 5
5= o O . (113)

Here o is the u-boundary surface: O, B for y
or O, C for z. With sS=ze , elther p is zero
or 2p/au 1is infinite. The last relation
requires an infinite surface current and 1s
physically impossible. Therefore p is zero on
the surfaces which have infinite surface recom-
bination velocity. Thus the excess hole densilty
is zero on all surfaces,

Following the same procedure as for the
case of arbitrary s, we find

¢=+Y fi\rfﬁ'ﬁ%(") ferpl 2 laea)- enp ] (114)

mn
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| S A N

Fig. 3. The geometry and coordinate system for
the three dimensional semiconductor with Infin-
ite surface recombination veloclty on the trans-
verse surfaces y=0, y=B, 2=0, z=C. The p-n
Junctlon 1s on the x=0 boundary and an ohmlc
contact is on the x=a boundary,
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Fon = sin Z3d sin Lo , (115)
%= * & ; (116) '

5 7. - 1
Koo, = KaSe k= ) ) (o 42) . )

- Equation (114) 1s the scalar Green's function
for infinite surface recombination velocity on
) the transverse surfaces,
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CHAPTER V

TENSOR GREEN'S FUNCTION FOR THE SEMICONDUCTOR
WITH A pen JUNCTION

5.1 Formal Soiutlion of the Diffusion Current
Density wilith the Tensor Green's Function

In deriving the noise from a p-n Junction
the vector inhomogeneous differential equation,
Eq. (36), must be solved; one method of solution
is with a tensor Green!s functlon. The general
properties of tensor Green's fupctions are
reviewed in Appendix A,

We solve the lnhomogeneous current density
equations (36) and (37) formally with the tensor
Green's function,[’, defined by Eq., (Al4). Equa-
tion (36) 1s postmultiplied with " while equation
(Al4) is premultiplied with J and the two result-
ing expressions are subtrascted, The following
tensor identitles are used:

SLEDT= EREN+EFD-T (118)
and FEE M= E@FTTIFEN. (119)

The resulting equation 18 integrated over the
volume using

‘Q.F:F‘J=E (120)




N

o ———— e~

NAVORD Report 5762

for any vector function F and for the ldem-
factor <, Eq. (AlO). The symbols r and r, are
interchanged and the reciprocity condition, Eq.
(A22) 1s used, The current density is

;(r) = jﬂ:gu"j’(r‘-‘] APJ - ;(C\[V.'F‘J} M dKo + f[g('ﬂ"f‘l] dV. . (121)

5.2 Formal Vector Eigenfunction Expansion
of the Tensor Greenl!s Function

In order to use Eq. (121) we must find an
explicit expression for the tensor Greent!s func-
tion. This 1s accomplished formally with a
complete, orthogonal series of vector eigen-~
functions, §,, . These vector eigenfunctions
must satisfy the equation

- 2 -
36.31'"\“_1‘ K-l\mn jlm\r\: 0 b (122)
and the orthogonallty condition

f;].i“\“. jl'w'n' dv. = A_R‘M\‘\ 8’““‘"; 8w n . (123)

We expand the tensor Green's function 1n
a series of these vector eigenfunctions,

- 4
r‘: Z AXY'\Y\ 39.1\7\ n’) . (12)4)

fvan

This series is put into Eq. (Al4) and both sides
f the resulting expression are multiplied by
?umm'and integrated over the volume, Using Eqs,

123),(120), and (88) the vector coefficients
are

-

Ah'w‘: j‘““\r)/ﬂ.j““ K’;“M,\ - (125)
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Substituting Eq. (125) into (124) the tensor
Greent!s function becomes .

-~ -> [
Petv) ; e () Tl A Kot + (126)

This is the formal expression for Green!s ten-
sor in terms of a complete orthogonsl set of
vector eigenfunctions,.

5.3 Vector Eigenfunctions14

The vector elgenfunction solutions of the
vector equation (36) are obtained from scalar
eigenfunction solutions of the corresponding
scalar eigenfunction equation (84), These vec-
tor eigenfunctions are written as

3 1

Foma= 1 X+RY+T,Z=T+MN | (127)

-
-~

- - ~2 -5 _"= o e d /
where L=VQ ;M-‘-V"(a-‘““’);N v V"(anwl)/’h.m (128)

and X, Y, Z or v, %,% are elgenfunction solu-
tions of equation (éu); &, 1s the vector normal
to the surface and w is a function of the coor-
dinate in the directiona, . The eigenvalues,
Kimn, and the relative magnitudes of X, ¥, 2 or
Y,¥ ,¢ are adjusted to satisfy the boundary
conditions.

In the p-n Junction the diffusion current
is proportional to the gradlent of the hole
density. Therefore a vector eigenfunction is
the gradient of a scalar elgenfunction, The
curl of these vector eigenfunctions is zero, and
M and N, Egqs. (127) and (128), are zero,

~ For an arbltrary surface recombination
velocity the vector elgenfunctions are
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4 :-—-D‘-\ 65’“\"\ ]

Ju Y T

where Fip, are defined by Eq. (98)5 K%gn(by (106)
an

and the boundary conditions by (96

(129)

97) .

These elgenfunctions satisfy the differential

equation (84).

5.4 Non-orthogonality of the Vector
Eigenfunctions for Finite s

To investigate the orthogonality of the

veetor eigenfunctions we wrlte one
in component form:

= :’.-‘ 8 ry N s (xS -
Jamw ll]wu +hvhuu Al tl]jMN

-

DR S

=-D e : Q2 =) 3\n Pya
9 [y P sin T O

a sinﬂAv

T-E By sin BL cos By @3infa

of them
(120)

Cos “,,_‘1
sin pk

oy ﬁn‘z
sin ﬂp 7

cosﬁu 'Z'.J

whe: M refers tomor« and N tonor v ., All
possible comblnations of the cosine and sine

factors are implied 1n each term.

A component

of Timn is denoted by the coordinate written as

a superacript.
The orthogonality of the set

of vector

eigenfunctions is determined from Eq. (123):

» - N -, - -2,
me«‘:h‘u‘w av ~j];mu]‘l.wu‘ v + SJISMN):'M'N' v *ﬁnv]'zn'u"’"(]‘}l)
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To evaluate these integrals,Eqs. (102) to (108)
and the following expressions are used:

Ein A sin paL du=1§;—f;_@ gintd ;c.\.p:i‘ s:“ F:’*.)“ (132)
- L—Qd‘v" N ‘.\i

!

fsinau sinfou du = “E—(sin ag,«)]:- L, o e=e' (133)

e
) 2s '\(")'a,Qn"t.v;_]
["cﬁﬁfu QOS/Bf'u du‘=w 9_"[,&%%: ca%};.’e? (134)
= PP

« .
I_go.sé,u msﬁp.u du= ("" S‘:ﬁt h =L; ;f,:/,’ (135)

«
é:sin u cosfou = 0 (136)

The superscript plus 1s not written unless
there 18 a chance of ambigulity. Here r stands
for m or n, A stends for « or /, and u for y
or z, respectively,

The components of Eq. (131) are now

. - (Dq
Ij:.wm )A'M‘N' av _(D a %: L’:l\\iﬂ ngm‘g'm‘n' . (137)
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The y component has two cases:

Case 1: Ad=4!', MsMt, N=N!

. 2 LY T
/):MN ]‘I'M‘N‘ d‘ = (Dqﬁlﬂ) %E MLﬂgxﬁ,1'N| - (138)

Case 2: A=4t, M=M!, Ns=N'

. . 2 t
/J:MN ]E'M'N' av :(D‘\ﬁn) % EM L" &jﬂ\ﬂ,l'ﬂ'ﬂl . (139)

The z-component also has two cases:

Case 1: d4£=£1, MsM!, NAN!

: : = + N’
[i i Fawne 04 = @) g LW 8 s (140)

Case 2: &=4', M=M!, Na=N!

2

.2 . 4. F
JJAMN J.Z"M'N' dv = (Dq 6!\) %— \"'M\-r\ sgmm,g‘w"’.(lul)

M refers to either m or « end N refers to n or
¥ . The &§1,3j are Kronecker deltas. When

two symbols are written in a column, the upper
symbol refers to elther m or n and the lower one
to 4 or v . The integrals in Egs. (138) and
(140) do not vanish even when M#M! or N#N'; the
set of vector eigenfunctions is not orthogonal.
Therefore we are not able to construct a tensor
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Greents function from these vector elgenfunc-
tions,

5.5 Vector Eigenfunctlons for Infinite
Surface Recomhination Veloclty

In the speclal case of infinite surface
recombination velocity a complete set of ortho-
gonal vector eigenfunctions can be derived for
the three dimensional p-n Junctlion. These"éligen-
functions are found from thé products of Eqs.{l15)
and (91) and the gradient operation of Eq. (129?:

= -DaRZ, (% cor Bt 4Ty oo st B (142)

The orthogonality relation 1s proved from Egs.
(142) and (123):

-J"l:n..i:.n'"' dy = (D 9 K:\'\\i- n&?_c‘ Slmf\ Sww’ =ﬁvm S.Rv-m,\'w‘n‘ '( 143 )

Here a, B, C are shown 1ln Figure 3 and Kf%; is
gliven by

L

S~ vl vk = gijﬁr(«_‘;%h(%)z. (144)

5.6 Eigenfunction Expansion of the Tensor
Green's Function for Infinilte
Surface Recombination
Veloeclty

Having found a complete set of orthogonal
vector elgenfunctions for the infinite surface
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recombination velocity case, we construct a
tensor Green's function. Affixing the super-
script e onto the parameters in Eq. (126),
Green's tensor is

- o - oD A
M) = J;!rnn(r)-‘T,ln'm (r‘)/'/\lmn KKlm'\ . (1)
mn

K> * 18 derived from Eqs. (144), (88), and (27):

Klimn

K * = (D2) + (/) sty m/B)* +(TnA §eiw/D.  (146)

The tensor product of a vector elgenfunction palr

is

Jon  Jrin dtis
[ 32 T (L47)

$ +2

Y wy=| 500 £ 535 |

I A o o

where the subscripts in the vector eigenfunc-
tions are not shown. The denominator of Eq.
(145) can be written as

ATk 2= (3/0ATKBI - (K5, Y71, (148)

Kimn

o - L 2 - a -
where A imn, Kk K, Kimp» and A are given
by Eqs. (143), A4BJ, (57)-"R1ub), ana (B3u)
respectively.

Using the abbreviatlons

4o
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cos (TTru/e) = Cr 3  Sin (rruse)=5y; (149)

cos(mru,/e)=Croj sin(Tru./e8)=5S, ,

where the subscript r» stands for 1, m, or n
while u stands for x, y, or z respectively,
Green's tensor functlon for the infinite sur-
face recombination velocity case 1s glven as
Equation (150) on page 42.

When the x dimension of the rectangular
paralfepiped goes to infinity, a technique sim-
ilar to that used in Section 4.3 tvansforms

= l(lr/ro) into Eq. (151) which is given on
page 43,

In Eq. (151) there are two classes of
components: one contains » obtained from
Eq. (144) with £ equal to zeéPYo, while the other
contains Ky, Eq. (117). To understand the
meaning of the two classes of terms, let us
review the physical significance of the Green's
tensor function. Each tensor is composed of
nine components. When the three dilagonal terms
are excited with Dirac delta functions, the
Green'!s tensor describes the state of the sys-
tem. This state depends on the properties and
the geometry of the medium and the sources,
For the semiconductor the properties appear as
the diffusion constant D and the time constant
T. One of the properties of the source is its
frequency. o

The components containing Kgy, depend on

the properties of the medium and the frequency w

of the sources as well as on the geometry.
However, the terms containing X3, depend only
on the geometry of the medium and therefore can
contribute only an additive constant to our
final result. We have examined this constant
and found it without physical meaning,

L)1
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Therefore to save space we neglect the terms
depending on K7, in our further analysis.

In the subsequent work X,>x and the upper
signs are used in Eq. (151). $he tensor Green's
function for s=o and a= is given by Eq. (152)
on page 45. Equation (152) is the required
expression for the tensor Green'!s function for
the three dimensional p-n junction with infinite
s on the transverse faces,
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CHAPTER VI

NCISE CURRENT SPECTRUM IN THE p-n JUNCTION
WITH INFINITE SURFACE RECOMBINATION
VELOCITY

6.1 Introduction

We have derlved expllcit expressions for
the nolse generators appearing in the Langevin
equations of the semiconductor, and for the
scalar and tensor Green'!s functions. We now
use Green's functions to sum the contributlons
Ifrom the infinitesimal noise sources and derive
expressions for the total nolse spectrum of the
pP-n Junction. The recombination noise spectrum
1s derived from the scalar hole density, Eq.
(82), and the scalar Green's function, Eq. (114).
The diffusion noise spectrum is found from the
vector diffusion current density, Eq. (121),
and the tensor (reen's function, Eq. (152).

Since the recomblnation and diffusion
nolse spectra are the result of independent
elementary processes, they are derived separ-
ately, These nolse spectra are added together
to obtain the total noise spectrum.

We conslder first the case of infinite
surface recombination veloclty because we have
been able to derive bhoth the scalar and tensor
Green's functions for this case.

6.2 Recombination Noise Current Spectrum

Let us examlne the surface integrals in
the expression for the hole density, Eq. (82):
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pTinl, =fla”%, ptr.)*p(ro)i‘y;c-"’J-d/'\',,. (153)

The subscript s denotes the contrlbution from
the surface lntegrals, and the superscript oo
indicates that we are conslidering the case of
infinlite surface recofbination velocity. Since
the excess hole density p*°(r,) on all the sur-
faces equals zero for the boundary condltions
discussed in Sectlon 4.4, the second term on the
right hand side of Eq. (153) i1s zero. Further-
more an examination of Eqs. (114) and (115)
shows that G® vanishes at the boundaries since

{exp(-Kg pp [x=Kel) -exp(-Kcr [xo Xof}] 20(254)
Yoo

o0 o X~
ané FMU'.)L.% 203 F:,,(c)L’:oEQ (155)

Y8 E,=(

In each of these expressions there are two
evaluation surfaces; each expression iz to be
‘evaluated separately at each surface. There-
fore, the first term on the right hand side of
Eq. (153) 18 zero and there is no contribution
from the surfaces, Thus the excess hole den-
sity equation (82) becomes

P"(r)=fc\°'6‘dv°. . (156)

The excess hole denslty 1s transformed to
current density at the x=0 plane with the
homogeneous form of Eq. (14), and the current
density is integrated over the x=0 plane. The
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result is
-e.c BC
I‘Lﬁ[!S""d"'dﬁd-’w!/w/bxfﬂjvdch\. (157)

Since S(r,) 1s not a function of the observa-
tion coorginates, we get

(acrax| dydz "'6/“){"“"[‘3{/"("‘”:’:"&}%?@ ,(158)

where G 1s given by Eqs., (114), (115), and
(116). Substituting Eq. (158) into (157) the
current at the x=0 plane is

I, (f) = (159)

R ® BC -
"Dq(/b/ﬂ"‘)é2 %‘:\@! .( [S,,('G)GXP“"-KK,,\“MV.,-

From now on the fact that the current is in the
x-direction and 1is evaluated at the x=0 plane
wlll not be shown. The subscript r designates
the recombination process,

A noise process is characterlzed by 1its
gpectrum, To derive the recombination current
spectrum, w(iI, (#)1* ), we use the relation
between the spectrum andl$he Fourier frequency
components given by Rige™':

wlLf®) =Lim L HIL( §)/T,  (160)
To®

whepe T 18 the time interval, Substituting Eq.
(159) into (160), using the relation for the -
recombination source spectrum,
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Lim $05,6) S, $) fr = (]S, 0r)) 8(6-E)d Vo (161)
"‘r....o-

and empioying ]¥(l)6(¥"Yo)d¥"?(x°), (162)
the recombination spectrum becomes

2
w(lTI%) = (163)

[li%z. .(jmmnn S5 S ge"PL"'(K +K idva

me my he

:3

The symbols w( , and Ky, are given
by Egs. (65), 21E9 ), an§°(117 KBRS Dirac delta
function 1n Eq. (161) expresses the fact that
at each point of the semiconductor it is as-
sumed that the nolse source 1s uncorrelated
with the noise sources at all other points.

The recomblnation source function, Eq.
(65), contains (p¢( . Thils quantity is
defined by Eqs. ( §113 fo (Bl13) and is made up
of two parts, the thermal equllibrium hole den-
sity <pgl ro 7N.8nd the average excess hole
density <pt(r 3 . Integrating the part of Eq.
(163) which contains the thermal equilibrium
hole denslity, the Nyqulst current spectrum is
obtalned:

» =l

wrlizti), =C6 g/l A0S, [min (7, KL ] (260

where A~  and Ky, are given by Egs. (B34) and
(117) respectivefy.

The excess recombination noise spectrum
is derived by integrating the part of Egq. (103)
which contains the average excess hole density,

ko




NAVORD Report 5762

(B21). Before integration this equation is

wiLyl), =F,;ir]lh‘°’ (165)

ZfL Mex/s{ ,(frm" i xmn)]dv,,_

AN mmm na'n"

nnn"

odd

Integrating Eq. (165) yields

w(T), = [q]

(166)
" i, -f
{ (i m‘f-fz% Pl ter’ ) = 0 I,
K:.mn KKm'n' ‘Kk’mn
nmym
an'n"
ad‘
where the symbols A 8 and K .
ard given by Egs. (Bjﬁ) é mo lhng' 1173
(B22) respectively. In deriving Eq. (166) the

followlng integral has been used:

. e -~
(SrosvaSndu, = ~dorrrfafrt ey rrflf (167)

where only those values of r, r!, r" appear for
which the value of |rtr'sp'| 13 odd. The symbol
r stands for mor n; © for Bor C; and u for y
or z, respectively. Therefore in Eq. (166)
there apPear only those values of nm, m', m and

n, nt, for which the expressions |mznitn'| and
mznanﬂ are odd.
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6.3 Diffusion Noise Current Spectrum for
Infinite Surface Recombination Velocity

The expression for the diffusion current
density is given by Eq. (121) with = super-
scripts. Since R¥.J*and ¥-f"go to zero at the
boundary, there 1s no contribution from the
boundaries. For the x component of the current
density, Eq. (121) becomes

320 = [ (Sou, (V70 4 Sy, Vo 1S, o) v+ (168)

To get the total diffuslon current I éf in the
X direction at the x=0 plane, Eq. 8
integrated over this plane. The result is

Io(f)= f{(f [:(s,,,.ﬂl 19

o Yot \m 501., \ )dbd"-‘i’i_(169)

Performing the integration atv the xs0 plane,
using Eq. (152), the diffusion current becomes

(170)

L{§)= wﬂv Zﬂic(smsmsm\(““ - v 3» C....S,.. “Sn 3 Cvm/ efd::

odr\

where Sp, and Cpo are given by Eq. (149) and Sp,
are the u components of the diffusion sources,
The diffusion current spectrum is
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o Wl = () (171)
;;; ® B
; exp [~ 1 (K N }
; ; ENS PR o A
| 5“7 + Eﬂ’w(lsx,,. )cmc,..., Swe s.,.:_]/m'B"
! Hi + 1 W50 1) SmeSure C,‘,C“-.]/Vnw' c*) .

M' )
. oda

Here we have used an equation similar to (160)
end the diffusion source spectrum given by

%me SDu. SD“‘ = W(\SD“\)S(V‘;Y}) dve . (172)

At an arbitrary point the diffusion sources in
the three orthogonal directions are independent.
Furthermore, the diffuslon sources at an arbit-
rary point are assumed to be independent of all
other points.

In Eq. (171) the noise sources, Eq. (75),
contain the average hole density <pe" *». As in
Section 6.2 the part of Eq. (171) which contains
the thermal equilibrium hole density glves the
Nyquist nolse while the part which contalns the
excess hole denslty glves the excess nolse,

Integrating the Nyquist part of Eq. (171),
the Nyquist diffusion nolse is

. —— e —— —————ee

w(i3), = L2qes (Kl + K22

_ (173)
y“’“’- (K:vun -T K:':v\)

"W

where A™ and Kymn are from Eqs. (B34) and (117)
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respectively, and Kmn is from Eq. (144) with £
equal to zero,
The excess noise part of Eq. (171) is

WL, = (K" 2 ¢ D p/ ) (174)

C
{e‘f’{?“a(\‘:‘"d‘ Koo K] av

Swo Swia Semig sms.as.\ o Kl K‘m“
M “n'n'

+ Tr Cvns Conte Swo SvnaSw'c Sw e
T nn B

+ 1“'15“. Swmie SmiaCneCne Snp
! C'L -
Iy e _

'Vﬂ“\"\
" n '\
odd
Here Eq. (B2l) is substituted for<p.m)in (75),
which in turn is put into (171).
Integrating Eq. (174) shows the excess dif-
fusion current spectrum to be

Wil = (A 2" Dp @) (175)
z K»“ T W )'\'g:‘(v\m -n)
(Kme Yomen K ]B“ ) - (2-"""")1“.(“ “w! “‘)R(L'"“)‘]
“.JQ "

where A”, ppf Kkm? and Kg: are given by Egs.
2B3ﬂg (Bsg (117}, anda (B22 Here we used Eq.

167) and the integral
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o -
J. CroCeotmdigr = (Z BTN rte pte v Yot e e @ee , (176)

where r 1s elther m or n. In Egs. (167) and
(176) only those values of r, rt, r" appear for
which the expression |rirtsr"|is odd.

6.4 Total Nyquist Noise: Stochastic Theory
and Nyquist Law

The total noise spectrum calculated from
stochastlic theory 1is composed of two parts:
the recombinatlon current spectrum and the dif-
fusion current spectrum, Since the recomblna-
tion and diffusion processes are independent
statistically, we add the spectral densities.
For the total Nyquist nolse current spectrum
Eqs. (164) and (173) are summed to get

s £ § o [diy] o

The symbol R (K, means the real part of K
From equations %ﬂ?o B22) and (1178 e get Hmn*

% -
R =0z Lt v g v 2 1= . )
With Eq. (178), Eg. (177) becomes

s 2R Y AED L ar)

As a check on the above method, the Nyquist

noise current spectrum 1s calculated from the
conggctance at the x=z0 plane. From the Nyquist
law the noise spectrum is

54
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Wit = +KTG, (180)

where G 1s the real part of the thermal equilib-
rium admittance of the p-n Junction. At thermal
equllibrium Vo, 18 zero in the expresslon for the
admittance, Eq. (B33), and Eq. (180) is identi-
cal with Eq, %179). Thus the result of the
Btochastic analysis is correct, giving us con-
fidence in the method of tensor Green's func-
tlons, We shall see in Chapter VII, on the
other hand, that the stochastic result obtalned
by the use of scalar Green's functions does not
check the result obtained from the Nyquist law,

6.5 Total Excess Curreni Spectrum with
Infinite Surface Recombination
Velocity

Adding the excess recombination and the
excess diffusion current spectra, Eqs. (165) and
(175), the total noise spectrum is found to be

w(T), = [2°¢ Dp, 0 A/A"] {(n“i"m\«:;-“.w:,.ﬁ‘

o
m,‘::‘u

X [%—'C+ K:mn K::"‘ + }Eel ("“1‘*"‘""‘ "\"1)"'3_%1 (V\."-h N "-v\"")]
7 21 -t
Y Lot = v Y v’ ] [('ﬁ B (?m'n")] }a
(181)

where A®, py, Kgro, and Kigi. are glven by Egs.
(B34), (B5§, (IK??, and (525?. Here r represents
either m or n and only those values of r, r!, p"
appear for which |rzet:r"\is odd.

It is interesting to see if the excess
spectrum 1s proportional to the steady current
flowing at x=0. The dc current density is
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derived from Eqs. (12) and (B21). Integrating
over the x=0 plane glves for total current

I [2%D p, O A/T*] Y Kyon frivt. (182)

Comparing the dc curﬁght with the excess
current spectrum, Eq, (181), the two relations
can be related., However, the factor of pro-
portionality 1s a complicated function of
frequency, semiconductor parameters, and geometry.

6.6 Divergence of the Expression
for the Nyquist Nolse

Let us examline the noise spectra for con-
vergence at each frequency. The Nyquist current
spectrum, Eq. (177), is converted into a double
integral and integrated. All terms in Eq. (179)
are positive, and we investigate the range for
large m and n. Making the transformations

gis n
. ST SV St

and neglecting 1/DT and w/D with respect to m
and n, the series in Eq. (179) becomes when Ax
and Ay go to zero

- e (® 2. nh
):———)Rﬁ'::::- >§—CJ J ‘———!“:3,1 L L (284)
- N WM RN

With the transformations

X= fcos O 4 ¥=p s'\ne,dx<l1_=j)dpd8, (185)
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Eq. (184) becomes

® r O
K wo- [dp [+ & _d0
Z&:“_\s:\:g.>€-c f—ﬁ[ LY 16‘_@‘(186)
m P CT;_

Therefore w( IIEI)N becomes infinite,

To determine the physical significance of
this divergence we ilnvestigate the admittance
with Vy=0 at the x=0 plane, since the Nyquilst
curreng spectrum l1ls proportional to its real
part. For arbitrary surface recombination vel-
oclty the admittance at the x=0 plane is given
by Eq. (B28), The factors in the denominator
of the infinite serlies are each bounded and are
neglected for discussions of convergence, Fur-
thermore, from the boundary conditions Egs., (96)
and (97)

Bp = v+ A0, (187)

where r stands for m, n; « for b, ¢ respectively.
Only for infinite surface recombinatlon velocity
does NG, always remain /2 independent of r,
Otherwise A®, approaches zero as r goes to
infinity.

If we take r finite but‘so large that
40n 1s small, (4 *+4,']%» [(DT)" «i u/D% , and
the 1dentity for large positive integers m and
n

ot 4 ) L v (188)
the series in Eq. (B28) becomes
Z: sin B bY ﬂn&&K %Eﬂﬁiﬁﬂﬂii . (189)
] ﬁwb p"‘c "'"'“.“ ) T mm
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As m and n individually go to infinlty the
terms go to zero because (8 8.)'or (8©4)* goes
to zero. The value of the input admittance is
finlte except when A8, is /2, when it 1s
infinite. When 8= ghe surface of tha seml-
conductor seems to be covered with a perfectly
conducting layer which short-circults the semi-
conducteor. Therefore the Nyquist nolse current
spectrum becomes infinite when the surface
recombination velocity is infinlte.

A convergent expression for the case of
arbltrary s can be written down directly from
the Nyquist Law, Eq. (180) and the real part of
the admittance, Eq. (B31). This is discussed
further in Chapter VII for the case of arbitrary
38, Now we examline thls expression for the case
of large but finite s,

From the boundary conditions, Eqgs. (96)
and (97),

V =5a/D =ga langa, (190)

When ¥ 1s large we can write A« as 7

rT _Xrw _xw
Prd 2 Tz T % €, , (191)

where r is odd. Substituting Eq. (B3l) into
(180), letting ¥ be large and the dc voltage at
x=0 be zero, we get for the range of small &, ,

w(it'), = 97ZADg’ p

X cos (mrd/asé) cos (nrDasc) ]2. (192)
M (772X -D/sEX n/2)(1-D/se)

- -4
sin(mrp/s 4™ Sinlprn/sg)
X [’ * fnrr(HD/s&)] [’ Y ohe {4D/5¢)

X J{L 02y s LimmrzgX1-Dss 83l /2.c)1-Dsel T ot}

+ (D) s [(mn/e8 )-D/s8)* + [ (nwrvze ) —D/JC)JZ}}).
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If we let sb/D and sc/D become very large
while &, and & remain small, Eqg. (192) becomes
identical with the Nyquist current spectrum with
s=w, Eq. (179); to make the two equations agree
the conversion factors between Figures 2 and 3
are used:

B=26; C=2c, (193)

6.7 Convergence of the Serles for the
Excess Noise Spectrum

To discuss the convergence of the excess
nolse spectrum, we investigate Eq. (181). In
the denomlnator of this equation there are two
factors which contaln minus signs, one in m and
one in n, Taking the factor in m (identical
resulis are obtalned with n) the indices m, m!
and m" are related so that \msmfzm"| must be odd.
For the whole factor to be zero

(m*- - m"')z =Zmn > (194)
Solving we get
mim'am’=o0, (195)

Since zero is an even number, the factors cannot
vanish., Furthermore the factor in m is nega-
tive whenever m<m+m",

The question of convergence of the excess
nolse spectrum is a very difficult one to
answer. Converting the sum to an integral is
not permissible since some of the values of
r, r!' and r" are not present. Furthermore only
conditional convergence and not absolute conver-
gence 1s required, Putting test values into the
serles the denominator ilncreases very much
faster than the numerator. It appears that the
sum converges rapidly, but a rigorous proof
would require numericel evaluation of the excess
noise spectrum,
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Equation (181) can be used to caleulate
the excess current spectrum for infinite sur-
face recombination veloclty. From the above
discussion of the Nyquist nolse, we can expect
that Eq. (181) provides an upper bound for the
excess nolse spectrum when the surface recom-
blnatlion velocity is large but not infinite,

6.8 Contribution of Electron Density Fluctuation

in the p-Type Materlal

Our analysis has only consaldered hole
conduction in the n-reglon. Shockley’ has
shown that electron conduction in the p-reglon
is simply an additive effect to the hole cur-
rent. The nolse resulting from the concentra-
tion fluctuations of electrons 1s statistically
independent of the hole fluctuations and the
analysis is similar to that made above. When
the p and n symbols in the expressions for the
hole fluctuations are interchanged and when the
values of D and 7 for electrons in p-type
material are used, the derived spectra pertaln
to electren fluctuations in the p-type material.

The total current apectrum 1ls the sum of
the hole current spectrum and the electron cur-
rent spectrum,

€.9 Summary of Chapter VI

Using tensor and scalar Greent!s functions,
we have derived expllcit expressions for the
thermal equilibrium noise spectrum, Eg. (179),
and the excess noise spectrum, Eq. (181), of the
p-n Junction when the transverse surface recom-
bination veloclty approaches infinity. In
actual practice the surface recombinatlon
veloclty 1s never infinite, but may be very
large, Since Eq. (180) 1s convergent, 1t
should bve used to calculate the thermal nolse

when the surface recomblnation velocity is large,
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but finilte. The exccess hoise spectrum can be
evaluated from Eq. (181) and should give a
zood upper bound for the noise when the sur-
face recombination velocity is large, but
finite,

61




— ——— ————————— T b

NAVORD Report 5762

CHAPTER VII

NOISE IN A p-n JUNCTION WITH ARBITRARY
SURFACE RECOMBINATION VELOCITY

7.1 Introduction

In the discussion of the noise current
spectrum with an infinite surface recomblnation
veloclty, we had a very importeant check on our
work, We derived the Nyqulst nolse current

spectrum by two independent methods: the Nyquist

law using the input conductance and the stochas-
tic process theory using basic physical prin-
ciples. These spectra are identicali, In this

chapter we gét the current spectrum for the case of

finite surface recombination velocity. When we
compare the current spectrum of the Nyquilst
nolse derived from the Nyquist law and from
stochastic theory, we find that only for small
values of surface recombilnation velocity do

the two methods agree, 8Since the stochastic
process method uses baslic physical principles
and rigorous methods, we present 1lt, but we do
not resolve the question of which result 1s
correct,

For the case of arbitrary surface recom-
blnation velocity we use the rectangular coor-
dinate system shown in Filgure 2 with the p-n
Junction at the x=0 plane. The origin is at
the center of the p-n Junctlon.

To find the current spectrum for the
three dimensional p-n Junction, the excess
hole density p is derived with the ald of the
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scalar Green's function. This density p is
obtained from Eq., (82). Since the Green's func-
tion satisfies the same homogeneous boundary
conditions as the unknown function, Egs. (96)
and (97), the surface integrais in Eq, (82) are
zerc, For the surfaces xo=0 and X,=o0 this is
proved with a technique similar to that used in
Section 6.2.

The vanishing of the remaining surface
integrals 1s proved in the following manner.
They can be written as

p(r)], =[[6 <1 ptr) - pey RG] -dA, , (196)

and the mixed boundary conditions, Eq. (93),
can be written as

e =7 +f)5p/l) (197)

where the symbol } 1s def'ined by

e=1% +1 3% . (198)

b4 a‘fs z

Green's function satisfies Eq. (197). To
prove this, Green's function, Eq. (109), is
written as

C=2 [ ) R (199)
and 1s differentlated to get
F R,
ﬂ, f.as/G', U, ? (200)

where r denotes m or n, p denotes/u_or v , and
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u, denotes y, or z, respectively. Egs, (199)

and (200) aré evaluated at the boundaries with

the ald of the eigenfunction form of the mixed

boundary conditions, Egs. (96) and (97). When

we compare the resulting equations, we see that

Green's function satisfies Eq, (197).
Substituting Eq. (197) v Xp and a simi-

lar expression for % G into Eq. (196), p(r)|s 1s

found to be identically zero and Eq. (82) becomes

P(r)=f5(r,)G(\'|';)clvo . (201)

Here Sgpand G are given by Egs. (35) and (109)
respectively,

7.2 Bulk Recombinatlon Current Spectrum
for Finlte Surface Recombination
Velocity

The recombination current spectrum deriv-
ation is exactly the same as that for the
infinite surface recomblnation veloeity, The
Nyqulst current spectrum is

w(IL)®), = 44'A R L YL (Kt KE) (202)

where A, ¥ L and K are glven by Egs.
(820), (B19T (1785 ana (YB); and the symbols
q and T are defined after equation (12).

The excess current spectrum 1s

U’(‘ I,\:)c =
20
4%3 AJP"(CI f."z Yﬂ“ (,..'.’ xm'n' E::) E‘:)(K.(...*K:,_‘ & Kn'n" -3(, ’ )
™ r,m"
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whiere

I

)y _ “.t " ‘: = &
E... /‘cn Cpy Sy du, (ﬂrz*ﬁ'a'ﬂrz)a"“ﬂ:ﬁ:] (204)

+ T fF_5 ¢ [ I
x [([q'"ﬂb?'-lsy:) IYSrs:tco-'a\Crh 1"lgr' cmsr'dcr'k -ﬂ v ch UL T

f _ 2.t ? ¢
“R ARk v stehel A alol)]

{ R ] ¢ *
Cros Spos Cpas aNd Sp, are defined by
4 ¢
Co 3 cosfu, 5,8 sngu,, (205)
C,& H cea/g,,d , S:‘: smﬂc( '

where r stands for m or n; o for b or ¢; and u,
for yo or zg respectively. pp(0) is given by Eq.
(B5). The symbol Kytmn is given by Eq. (B18)
and the other symbols are ldentified after Eq.
(2ue).

7.3 The Dif'fusion Current Spectrum for Finlte
Surface Recombination Velocity

The diffusion current spectrum for the
finite transverse surface recombinatlon veloclty
requires a new approach. We reexamine the solu~
tion for the excess hole density, Eq. (201).

By transforming this equation the diffusion
nolse source takes on the same form as that
derived in Chapter III. Gradlents of the
scalar Green'!s function result from this trans-
formation.

We start the derivation of the diffusion
current spectrum with the solutlon for excess
hole density. The source functlon S 1s now Sp,
Eq. (35), and Eq. (201) becomes

Pt = /[ p (] Gdv, (206)
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The appearance of the Laplacian in the source
function makes 1t impossible to use the physical
source function, Eg. (75). We transform Eq.
(206) into

P = [[6o.p) 4R, -[[ p) -[26) dv, (207)

with the vector identity

6%l = % [¢%p) - [V pl- [V.G] (208)

and Gauss! theorem,l4

The surface integrals in Eq. (207) result
from the diffusion current to the transverse
surfaces of the semiconductor. This current 1is

caused by the surface recombination and is
related to the surface recombinaticn velcecity.
It 1s important to note that the surface sources
did not enter prior to the transformation of Eq.
(207). The three volume integrals are due to
the volume diffusion.

In order to derive the diffuslon current
spectrum, we solve for the total diffusion cur-
rent, Isz), in the x directlon at the x=0 plane.
When Eq. (20/;) is written in component form and
integrated over the x=0 plane, the diffusion
current becomes '

ID(F)=AD%;@./ et K ) A, (209)

X (L2080 Lol B oL D

b ve
+-/¢, e coe (20} )y, ;/f‘ [(%E:)Kxﬂc:“cjo a,.)Pmﬁ-t“:.‘(%g'.)A‘L ,:.)A‘,,A%,
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Here p, is substituted for p(r ). The symbols
A, 8,2, K, ,and p_ are givdn by Eqs. (B20),
(BL9), (llET? and (96 respectively, The sym-
bols D and q are defined after Egq. (12). 1In
deriving Eq. (209) the following facts and equa-
tions are used: the scalar Green's Iunction is
zero at the planes x=0 and x=¢; Eq, (14); in
Eq. (207) only Green's function depends on the
observation coordinates,

The diffusion current spectrum is derivad
by substituting the diffusion current, Eq. (209),
into an equation similar to (160) and 1s

w(lL}?) =4Dg’A ‘;Efmr’m-..'/ exp[4lKg,, K ] Ao (210)

e b
X {%s'[/; <Ft(b)> ANERA ro c'?n dz, ":/,.(Ft(c» GGl S “'f-]

mo VmD ne ne

b =
! * £ F § ¢ ¢ gt 4
+/b/ <Ft> [K‘Nn KKml“l ('—Mo Cn.o C“ cﬂ‘b .rﬂm/g"‘l sl!\l sﬂ!‘ﬂ cMcn'o
b ~¢

T TR dy.dz.}]] ,

where the symbola cfo, s}, Cpy, » and s;; are
defined by Eq. (205)5 while thé other symbols
are identified after Eq, (209). The factor two
in the surface integrals comes from the alge-~
braic addition of the two equal uncorrelated
noise spectra produced by currents to opposite
transverse surfaces. In the derivation of Eq.

(210) the relation characterizing the surface.
sources is

Lom 13827 -alBp8n IS0 0dwad, L (211)
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while the relatiou characterizing the bulk
diffusion sources 1is

L +[G)3ET] - (B swdan . o)

In Eq. (211) u stands for yo or zg while in
Eq. %212) Ug stands for Xos Yos OF Zgo; Jo denotes
any coordinate except u_. In Eq. 2 91 the
symbol w, ([3%],) 1s gigen by Eq. 80) while in
Eq. (212 the symbol W ) is derived from
Egs. (75), ), and tge homogeneous form of (14).
T'o evaluate the diffusion current spectrum
1t 1s divided into Nyquist nolse and excess
noise, For the Nyquist nolse p,. is substituted
for {pg(r)> 1in Eq. (210) and Phe equation

integrated, (213)
(i), = 4g'A Dpnﬁgfm{mr: [2skon BBl By Aofie L)
w0 »
= ¥ Lola )
{R——nnl‘ﬂ» 2aft St Bt L | # —;:—“—‘:“;(L":—} |
W mn .
man mn

where the integrals L'T', Ly, and L, are given
by Egs. \132), (103), and (133) respectively,
when r=r', L™ is replaced by L;; & 1s the
surface recombination velocity. "The other
symbols are identified after Eq. (209).

For the excess noise spectrum, pb(r) Eq.
(B17), is substituted for {p,rVin Eq (210)
Integrating the resulting equation, the excess
diffusion current spectrum 1s
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wilTpl’), = 4 ‘AF@D (214)
tm) . (n)
XZ [thn xrnn'xm’n" Ec't“‘- Ecce ]
':v,n n" Kimn * Kcmint * Kctmen
(m) ‘m

x [KKMn I(Mn +@n§n ‘,,“ ﬁpn E(n)

C(C

+ ,;_&(_C_a_jfm_i)c”lg 400-’&, 4 + Cosgtcosgccoéﬁ
D

ECtG

Eg_cc

The symbols £ and pb(O)aFe given by Egs.
(204) and (B5‘3¢"Symbol gac 18 glven by

a
Es(:: “! 5”‘(5 U, SthB .y, cosfp.u, du (215)

[‘Prﬁr"ﬁ— ra r'ac'a*'ﬁ Cf’d ! QVK P"Cmcr&s t)

~(8'+g"-g) (8 m‘rucr'u 3, a rhc"u*ﬁ Sr& a)J

X L(g+a - r..) a1

where Cf and S are defined by equation
(205); the other’Symbols are identified after
equation (209).

7.4 Total Nyqulst Noise for Finite Surface
Recombination Velocity: Stochastilc
Process Method and Nyquist

Law Method .

The total Nyqulst current spectrum deter-
mined by the stochastic process method equals
the algebralc sum of recombination current
spectrum, Eq, 2023, and the diffusion noise
spectrum, Eq. (213), and is
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tm
wlT), = 4¢* A D{Z[ " L = } (216)

Kmn

XLL,, (e 4l [)42sD* (L oL coB L L,
+BL, L Z[ :;nmrm HLsD kosp &ieesp B+, B L™ |
+Z H?‘J“""""][z.sb @osp NeosB B BL" J}

mnn' Hmn Khm

The Nyquist current spectrum for the p-n
Junction is now derived from the Nyquist law,
Eq. (180), and the input conduotance, Eq. (B3l);
it 1is

w(ll‘l) =2YZA Dﬁlbz
7/
X{[KK'mn +(w/D)J + KK'mn} . (217)

Comparing Egs. (216) and (217) we see
that the two current spectra are not the same.
The former has a triple infinlte series while
the latter has a double infinite series, When
the parameters sb/D and sc/D become very small,
agreement 1s attalned between the two expres-
slons for the Nyquist current spectrum, In this
case the ¥ factors_converge very rapidly, as
shown by Shockley,’ and the first terms of the
series represent the Nyquist spectrum adegquately.
For the usual p-n material 1/Dt is large with
respect to the Bg values in the Kkoo factor,
Eq. (112),

For small sa/D values the current spect-
rum by both the stochastic process and the
Nyquist law methods 1s

w(lI‘l);=w(u‘l): =4?‘A3DR[KK”] (218)
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where

RIK..) =2 *{[ [erp0) + D) (219)
Uz ) RV
+ DY g [ (Dey'+sD (6+¢ )ﬂ}'

Concernilng the dilfference belween the
stochastic process spectrum and the Nyquist
law spectrum for large values of aa/D, we note
that the transformation giving Eg. (207),
which was made 1in order to use the physical
diffusion nolse source, results in the gradient
operation on the scalar Green's function.
While thls seems correct formally, 1t may be
that 1t throws the problem into the domain of
the tensor COreen's function., The orlginal
reason for ilnvestigating the tensor Green's
functlon was to use the diffusion nolse sources
wlthout an additicnal transformation. Unfor-~
tunately an expliclit expression for the tensor

- Green'’s function for the case of arblirary

surface recombination velocity has not been
found. Therefore, we are not able to determine
whether the scalar method for the dirfuslon
spectrum ls in error or whether the Nyqulst
theorem 1s not general enough to handle noise
in 2 p-n Junction with mlxed boundary condi-
tlons.

7.5 Total Excess Current Spectrum for
Finite Surface Recombinatlon
Veloclty

The total excess current spectrum for
arbltrary surface recombination velocity is
obtalned by adding the excess current spectrum
for bulk recombination and for diffusion, Egs.
(203) and (214) respectively. These two sta-
tistically independent spectra add algebrailcally,
and the total excess current spectrum 1s
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w(I.I"I)E =4 A’ PA")D (220)
xm§mu:mn m'n’ m"n"Ec(cT)Ec‘:c) Kmn +KK"M K(’ “nl
nnn

X (oK, K. *paa E (ED]

+p p B (ED)' +25D" leosp p)eosp, s bl

+(c_o.sp fcosg,.. (Xcasﬂ C-X ) ]}B.

Let us relate the dc¢ current in the x
directlion at the x=0 plane to the excess cur-
rent spectrum. The diffuslion current density
in the x direction is derived from Eq. (B17)
and the homogeneous Eq. (14). Integrating
this current density over the x=0 plane, the
total dc¢ current, Igcs 18

P‘%D Zr o Kt Lo 3 (221)

where the symbols A, ¥

are given by Eqs. (EEO), 9), (Bl

g), (B5), and (111) respectively, the sym-
bols D and q are defined after Eq. (12).
Comparing this dc¢ current with the

excess current spectrum, Eq. (220), we find a
relation between the quantities, but the factor
of propurtionality 1s a complicated function of
frequency, geometry, and semiconductor constants,
When 8 is small the excess nolse spectrum, Eg.
(220), becomes

g(O) and

i = 4 A RIDLK, 06, 7] (o2

P 3 (/% -1
X {[2“‘( Kz'ao * wL/DL)” "K:'oo] +KK’-0}
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and the de¢ current, Eq. (221), becomes

Iy ~ROUA"Dg K . (223)
where K%, = (D2)” +s(474c)/D. (224)
When
w/B K Ko, s
wlrg = 8/5) g Ty - (225)

This has the familiar form of the shot-efffpt
phenomenon in a temperature-limited diode,~~
except that the constant for the dilode 1s two,
while Eq. (225) gives 8/3.

7.6 Spectrum of Electron Density Fluctuations
in p-Type Material

As in Section 6.8 the noise current
spectrum of the electron density fluctuations
in a p-type material is similar to the spectrum
of the hole density f{luctuatlons 1n n-type
materlial, The derivation of the electron dena-
1ty fluctuation spectrum 1s the same as that
descrived in Section 6,8, The total current
spectrum 1s again equal to the sum of the hole
and electron current spectra,

7.7 Summary of Chapter VII

Using scalar Green's functions we have
derived expliclt expressions for the Nyquist
noise, Eq, (216), and the excess noise, Eq. (220),
for the case of arbiltrary surface recombination.
This would appear to constitute a complete
solution to the three-dimensional p-n junc¢tion
nolse problem, However, because of the lack of
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agreement between our result for the thermal
equilibrium noise, Eq. (216), and the result
obtained from the Nyquist theorem, Eq. (217),
it 1s recommended that further study be made
before complete rellance is placed on the
stochastic results,
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CHAPTER VIII

CURRENT SPECTRUM IN A TWO-DIMENSIONAL
SEMICONDUCTOR WITH A p-n JUNCTION

8.1 Introduction

In many nolse experiments the semicon-
ductor sample has a two-dimenslonal nature,
The sample 18 several diffusion lengths in the
longltudinal or x dimension and for all practi-
cal purposes may be considered infinite in
this direction, In one of the transverse
directions, say the y direction, the fllament
is narrow and the surface recomblnation velocity
is important. In the other transverse direction,
the fllament 1s so wide that the effect of sur-
face recombination velocity is negligilble, A
bias voltage across the p-n Junction causes a
current to flow in the x direction.

Since there is no variation in the z
direction, the del-operator in Egs. (34) to
(37) becomes

“ = I,%—,;_ + Iv% (226)

Except for this change the current spectrum is
derived with the technique used to determine
the spectrum of the three dimenslional semlcon-
ductor containing a p~n Junction.
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8.2 Two Dimensional Current Spectrum fop
Infinite Surface Recombination Velocity

The Nyquist nolse current spectrum is

ur(lI’)N =Hm(4/")4%lf’n D MZ R(K:m)/m‘a (227)

where (228)

A2 = z"”z [(Crmre]sy0e)"s Leord] T (trmye]s l/vt)}"

The Nygulst noise spectrum derived with the
Nyqulst law and the conductance of the two
?ime?sional p-n junction 1s the same as Eq.
227) .
The excess nolse spectrum is

ur('l')i- = 1‘..“:|nﬂle(o) D
: b - (229)
(I/D‘L‘}"‘ Ko K:: + i (miam' =-m") JaB*

(KT + Ko +K ) (Lt w3 = (am']")
m,m,m"

where the only values of m, m', m" appearing
are those for which |mfm'¥m"| is odd. The
symbols p,(0) and A* are given by Egs. (B5)
and (B34), respectively; the symbols D, q and
T are defined after Eq. (12). The symbols Ky,
and Ky, are deflned as

X

[ (rm/8)° 4 (Loo/0) + 1/0¥ ] (230)

x
-
[1})

X
K;... z [(wm/B)" + s/pr]!‘ (231)
In two and three dimenslons the current

spectra behave the same (see Section 6.6); the
Nyquist currcent spectrum diverges, but the
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éXcess current spectrum appears to converge
rapidly. The excess current spectrum can be
used as an upper bound for large values of
surface recombination velocity. As in the
three dimensional case, the proportionality
between the excess noise spectrum, Eq. (229),
and the dc¢ current at the x=0 plane

w 2% Dp A~ o
o= S ; K (232)

is very complicated.

8.3 Two Dimensional Current Spectrum with
Finite Surface Recombination Velocity

The Nyquist’current spectrum obtained by
the stochastlc process method is

wOI), = 44’4 D (233)
X { Lt [L (KA 241/07) + A7 L7, 405D (mcedBab)]
+Z ¥, m:(a,p'“%bmﬁa.bi/smlﬁ,ﬂ )/(Kx..."'Km..')}.

mkar'

The Nyqulst current spectrum obtained by the
Nyquist law and the input conductance method 1s

w Uz, = zﬂ'bm,z L, - R (). (234)
The symbols LT and are %1ven
by Eqs. (B20), (103)) (133), (132), and (96)
regpectively; and the followlng expressions
define the remaining parameters:

= (sing $)/(B &1) (235)
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Ko =gz + e, (236)

[ R .
Rk Kt -, (237)

RKn)= [(K:'\C" %‘qt + K:'w]t . (238)

When sb/D becomes small, the Nyquist

%ectrum derived by the Nyqulst law .and by the
ochastlc process method ig

WO = Wl vt Ap D R K (239)

where  R(Kyo) =5 {Ef{ +Db‘ + ”ﬂ* pet m}t . (240)

In two dimensions as 1n three dimensions the
Nyquist current spectra obtalned by the sto-
chastic processes method and by the Nyquist law
method become the same only when sb/D is small,

The excess current spectrum wlith finite
surface recombination veloclty is

W(lIL‘)E~ w‘LA‘,P@ Z{'Jﬂ"m7m cu (KKm-fK\\m"rKN‘\*) (241
XD K KA A B Y

+ 2.5 (DEST) cos pub cos A cos }..-L]S .

(M)

The symbols p and ES5h are given by Egs.
(B5), (204), and ‘6525) respectively, the sym-
vols D, q, and T are defined after equation (12);
and the rest of the symbols are defined after
Eq. (234).
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The de current is

Iy = BOA Dg S 4y Ko Ly (242)

As in three dimenslions, Section 7.5, a
complicated proportlonality factor relates the
excess current spectrum and the de¢ current for
arbltrary surface recombination velocity. For
small sb/D the excess current spectrum is

WITH =22 S ApID{ (3 w508
+[LDe) '+ 5(Db)" )"+ (wD) T}
x{ {IL(Pe" s(6D"1* + ™ T

(243)

- -1y e
+(Pei'essD)") * [ow +sUDY'] "'}} :

When sb/D is small and when (w/DJK Ky, the
excess nolse spectrum hecomes

v 2
wlT), =3) % ABD Ky . (244)
For small sb/D the dc current, Eq. (242),
becomes

L. =hoADg Ko (245)

Thus the relation between the excess current
spectrum and the de current is

wirl), =@s)g I,,. (246)
The contribution from the electron den-

slty fluctuations 1in p-type material 1s similar
to the three dimensional case, Section 6.8,
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8.4 Comparison with Experiment

Experiments designed to study surface
phenomena are generally performed with thin
slices of germanium or silicon and flt the two
dimensional geometry qulte accurately. Experi-
mental methods are avallable to vary the sur-
face recombination veloclity. Certailn gaseous
ambients, such as water vapor, have been found
to increase the surface recomblnation veloei’ty6
greatly. Our results can be used to predict
the effect of such surface treatment on the
minority carrier noise of a p-n Junction. For
the case of arbltrary surface recombination
velocity, the Nyqulst contribution to the noise
can be calculated from equation (234).

An accurate approximation to the excess nolse
contribution can be calculated from Eqs. (243)
and (229) for the limiting cases of small and
large values of s, respectively., For large
surface recomblnation veloclty a triple infin-
Ite sum is involved and the sum appears to
converge rapldly., For the case of small surface
recombination veluelty the single term given in
Eq. (243) should be a good approximation. The
two dimenslonal solution should be useful for

comparing our theoretical results with experi-
ment,
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CHAPTER IX
SUMMARY AND CONCLUSIONS

9.1 Summary of Procedure

The noise in a semiconductor having a
p-n Junctlon results from the fluctuatlons of
the minority carrier density. In the p-n
Junctilion there are two different types of
minority carrlers: holes in n-type material
and electrons 1ln p-type material. The two
types of minorlty carrlers bechave similarly
and theilr current spectra are independent so
we discuss only the spectrum of the hole
denslty fluctuations.

The solution of the nolse current
gspectrum 1n &8 p-n Jjunction is complicated if
only the Kolmogorov-Fokker-Planck (KFP) equa-
tions are consldered. However, with the mod-
ified Langevin approach due to Petritz> the
problem 1s tractable. This method uses the
KFP equatlions locally to derive the noise
sources and then uses the generallized Lange-
vin equation to transfer thls nolse to the
p-n Junction terminal, In order to apply
thlc method, the inhomogeneocus semiconductor
equations are determined using the transmis-
slon line-semiconductor analogy. From these
inhomogeneous equations the scalar differen-
tlal equation for the hole density and its
assoclated scalar Green'!s function are found.
The bulk recomblnatlon current spectrum can
now be solved since the recombinatlon
process has only a scalar source,
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The diffuslon nolse source has the .
characteristles of a vector source and the
scalar Green!s function 1s not directly applic-
able. In solving the two first order semicon-
ductor equations for the hole density, the
diffusion source is changed and cannot be
determined from stochastic process theory. We
use two methods to remove this diffilculty., 1,
The vector current density equation and 1lts
assoclated tensor Green's function are investi-
gated., 2, The scalar hole density equation is
transformed so that the diffusion sources can
be calculated from stochastic process theory.

To carry out the first approach, an
explicit expression for the tensor Green's
function 1s required. A complete set of ortho-
gonal vector eigenfunctions 1s necessary, but
is not found for an arbitrary surface recombin-
ation velocity on the transverse surfaces. The
desired set is found for the speclal case of
infinite surface recomblnation veloclty on the
transverse surfaces. The tensor Green's func-
tion 1s determined explicitly and the diffusion !
current spectrum is derived. Adding the recom-
bination and diffusion noise spectra, the total
current spectrum for infinlte surface recombina-
tion velocity is determined. This spectrum
conslsts of two parts: the thermal equilibrium
Nyquist noise and the excess noise, Comparing
the Nyquist nolse spectrum with that derived
with the Nyquist law, we find that both spectra
are the same¢ and are infinite. The excess
nolse specirunm appears to be finite and is an
upper bound for the excess noilse spectrum for
semiconductors with large surface recombination
veloclity on ihe transverse surfaces.

Then to lnvestigate the second method of
deriving the diffuslon nolse spectrum, the
scalar hole density equation is transformed by
means of the vector integration by parts and
the diffusion source takes the proper form, A
gradient of the scalar Green'!s function appears
which gives the Green's function a tensor char-
acteristic., The diffuslon noise spectrum is

.4
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found for arbitrary surface recomblnation
velocity on the transverse surfaces. Adding
the recombination and diffusion nolse spectra,
the total nolse spectrum ils derived. The
Nyquist part of this pectrum is compared with
the Nyquist noise derlved wlth the Nyquist law,
Agreement 1s found only for small surface
recomblnation veloclty., The excess noise
spectrum appears to be finlte,

9.2 Discussion of the Nolse Current Spectra

The nolse current spectrum depends on the
area transverse to the infinite direction; it
depends on the characteristles of the semicon-
ductor through the diffusion constants, the
time constants and the surface recomblnation
veloclty; 1t depends on the geometric shape of
the semlconductor through the spacial harmonics,
The spectrum 1s flat at low frequencies, Only
for small surface recombinatlon velocity and
low frequencles 1s there a simple proportional-

-1ty between the excess spectrum and the dec

longltudinal current at the p-n junction.

If the nolse spectrum 1s integrated over
the whole frequency range, an infinite noise
current results. This 1s equivalent to the
infinite energy from a black body which was
eliminated by Planck's quantum hypothesils.
This shows that our equations do not pertain to
very high frequencies where quantum conditilons
become important,

: It should be possible to compare our
results with experiment for the limiting cases
of large and small values of surface recom-
binatlon velocity. For three dimensions Eq.
(217) can be used to calculate the Nyquist
noise for large s, und Eq. (181) the excess
nolse. For twc dlmensions the corresponding
equations are (234) and (229), For small s
Eqs. (218) and (222) and Eqs. (239) and (243)
are the Nyqulst and excess nolse contributions
for three and two dimenslons respectively.
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9.% Cancluslons

In this thesis we have contributed to the

development of the soclution of a cla%s of noise .
)

problems, The method due to Petritzls¥4 has
been generalized, using Langevin's determinis-
tic equations, nolse sources [{rom stochastic
process theory, and scalar and tensor Green's
functlons we have solved the p-n junction noise
problem. This method can be applled to other
three dimensional noilse problems. Furthermore,
the Green's functlons derived can be used to
solve deterministic semiconductor problems,

It would be desirable in the future to
extend the solution obtained with the tensor
CGreents function to the case of arbitrary sur-
face recombination velocity. A set of orthogonal
vector elgenfunctions 1s required for this.

Since we have a complete set of independent,
non-degenerate eigenfunctions, it may be possible
to construct a set of orthogonal vector eigen-
functions by Tgans of Schmidt's orthogonaliza- '
tion process, With a set of orthogonal vector -
elgenfunctlons it may be possible to construct

a tensor Green's function and carry out the

solution of the problem,

Such a solution, in addit'on to teing of
interest in semiconductor noise btheory, would
also shed some light on the disapreement between
our stochastic result obtained Ly scalar Green's
function and the result obtaincd by Nyquilst's
law.,
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APPENDIX A
i DISCUSSION OF GREEN'S FUNCTIONS
.

A.l Forward and Backward Equat.ons

The semiconductor equations as functlons of
time are affected by the directlon of time, When
time increases, these equations are called the for-
ward equations; Egs. (13) and (14) with variables
separated are

| - Vip -5 B -PeB o p ) 5y T 0t L (a1)

9700 -4 B0 - 169 =-TF 00 + g AN 43 Tp, 0. (A2)

Wwhen time reverses, the semiconductor equations are
called the backward equations and are written as

Vpelrot) + 3007 pelertyz - Oip -1t o VRt (A3)

> - — . -
T3 (et + 5 BT = 20 = 5oty R g T ), (A1)
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A.2 Equations for the Green's Functions
and Causgality

Each inhomogeneous semiconductor equation, (Al)
to (A4), defines an equation which must be satisfied
by its associated Green's function. The scalar for-
ward equation (Al) defines the equation for the
scalar forward Greent's function:

VAt t)- 5 3RO - JrtE) = - Ste-asten) L (a)

The scalar backward equation sAB) defines the equation
for the scalar backward Greenfs function:

v‘e(r,-t;r.;t)+;—,%%ﬂ*rt\ﬂrm - %(frﬂﬁ:ta\ =-8(r-r) S@t-t). (A6)

The vector forward equation (A2) defines the equation
for the tensor forward Green's function:

O3 Mriln, t,)-I-"- 2—?(“\"'*3 - %mﬂ!‘-,’cb =~ Jd8@n) Sk-t). (A7)

The vector backward equation (A4) defines the
equation for the vector backward Greent!s function:

F5- Mlootlat) + SRR IR ) —Clotler ) = g g sttt (a8)
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Here §-e)= 8(r-x) Bly-y) 8@-2D) (A9)
and §(t-t,) are the Dirac delta functions.** The
symbol £ 1is the 1demfactorl and in dyadic notation is
- - —y -? “
L=1,1LL+TE (A10)

where 1 is the unlt vector in the u-direcvion.

A Green!s function is interpreted as the
response at the poirt r and time t to a unit impulse
source placed at r_, and t,. Therefore the forward
Greent's functilons gatisfy the causallty condition:

P (rtintd=0 , i +<t,, (a11)

whille the backward or adjoint Greent!s functions satis-
fy the different causallty condition:

g lr~tln,t)=0 , it t>t,, (A12)

¥ denotes either the scalar or tensor Green's
functions.

A.3 The Frequency Domaln

When the semliconductor equations and thelr asso-
clated Green's functions are transformed to the
frequency domain, the forward and backward cquatilons
become the same. Usling the technique of Sectlon 3.2,
the scalar equations (Al) and (A3) become Eqs. (34)
and £353, while the vector equations become Egs. (36)
and (37). Equations (A5) and (A6), which the scalar
Green's funcotions satisfy, transform to

v a-K*G=-8(c-r) , (A13)

while Eqns. (A7) and (A8) which the tensor Green's
functions satisfy transform to
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Ter-K'r=-d §cc-v) . (AL4)

The physical concept invelved in the frequency
domaln 1s that the sources vary with a steady-state
sinusolisal frequency. A steady-state source 1s iso-
tropic in time and the forward and backward equations
are the same. In the frequency domain for a linear
medium the causallty condition for the forward Green's
functions 1is

~wé P bn, Pl , ~wstio, (a15)
and likewlse for the backward Greents functions
-mslp(l‘, '?-\Qn f,\é@ ’ —wst<oo . (Alb)

A.4 Reciprocity Relations

Green's functions satisfy a reciprocal relation.lu

The scalar Green'!s function for a single frequency
satisfles the relation

GlnleY =G . (A17)

This equatlion states that wilth a given harmonic
excitation, interchanging the source and the observa-
tlon point does not affect the behavior of the system.

The tensor Greent's function satisfies a recipro-
city relaf&on which 1s now derived (see Morse and
Feshbach,** pp. 877-883). Equation {(Al4) can be
written as the operator equation

QAN =-a4 &(r-n) (A18)

where the differential operator (L 1s defined as
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QpzU¥ -+ (AL9)

This differential operator can be represented as the

continvous matrix Q (riry1). With this matrix, Eg.
(A18) becomes

O leln)s Tl =-d8(-x) . (A20)

Interchanging rows and columns and reversing the
positions of the factors of the product glves the
adjoint of Eq. (A20):

Plein) Aey=-d 60r-n) . (a21)

The tensor Greent's function for the adjoint operator

1s the adjoint of the tensor Green'!s function
for Q:

ﬁ(r\r,\ = nlr) . (A22)

This is the reciproclty conditlon which the tensor
Green'ts function must obey.
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APPENDIX B

EXCESS CHARGE DENSITY AND p-n JUNCTION
INPUT ADMITTANCE

B.l1 Definition of Terms

We use the scalar Green's function, Chapter IV,
to solve two problems: the excess hole density
resulting from a d¢ voltage appllied to the plane x=0;
and the input admittance of the p-n Junctlon to an
alternating voltage applled at xa0O.

In the excess hole density problem we investi-~
gate the hole density at the x=0 plane, When no
voltage 1s applled at the x=0 plane, the thermal
equilibrium hole denslty pp exists throughout the
semiconductor. After applying the voltage V(0) at

the x=9 plane, the hole density at x=0 increases to
pe{0):
PO =p+p)=p+plexplgieytr)-l] (B1)

where q 1s the electronic charge, k 1s Boltzmann'sa
constant, and T 1s the absolute temperature. The
symbol p denotes the excess hole density.

Putting V(0) equal to the sum of a large dc
component Vo and a very small ac component Vi,

v(0) = Vo + vy (B2)

the exponential in equation (Bl) 1s expanded in a

power series in v;. Keeping the first two terms, the
hole denslty is

Pt(o) - ﬁ;*ﬂ“’)* £ () ,
~p +plexp gV /8T)-114 v, g7V [exp gl /AT )] (52)
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The excess hole density 1s made up of two parts:
pp(0P) , the excess hole density from the dc voltage,
Vo; and pj(0), the excess hole denslty from the ac
voltage vy Therefore,

p)=po)+p o, (B4)
hO = lexp (gl /£T)-11, c (B5)
b (o) = B gn /T, (B6)
where . = plexp (3 Uy/AT). (B7)

The average value of the total hole density at
the x=0 plane,<ps{0)?, is found by taking the ensemble
average of py(0) . Since the average value of the
alternating component plU» 1s zero, we get

(g©))= p +p®© (88)
and define (R G, ~f (B9)
and KWk = p ), (B10)

where the subscrlipts N and E denote the thermal equil-
ibrium and the excess part of the average hole density,
respectively.

When a voltage 1s applied at the x=0 plane, an
excess hole density also appears throughout the whole
semiconductor and Eqs. (B8§ to (Bl0) become

Cpr=po+p(r) (Bi1)
(RO W=p (B12)
(P = Btr). (B13)
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Thege equations refer to finite surflace recombination
veloeity s on the transverse surfaces. For the case
of infinite s we put oa superscripts on the variables,

“B.2 Expess. Hole Density and Input: Admittance

Let us evaluate the excess hole denslty in the
semiconductor with the p~n Junction. Assuming that

all sources are zero except on the xfo plane, Eq. (82)
reduces to

¢ C

pir) = ] ’ fc_ p(r) (36/0%) dy.ds, (B14)
c &

Poﬂ(” ’_'L‘BI P‘én) (bG/BXJdtsg Cisg ’ (315)

where no superscript and the e superscript stand for
finlte and infinlte s cases respectively.

For the finite s case (dG/®x,) 1s calculated
from Eq, (109). When x, goes to zero, we get

G -1
%1:\! +°= p%N FMN(n) FMN (r} LMN e_xP [-X KKMNJ‘ (Bl6)

Since p(ro) is constant over the x»0 plane, and Eq.
(B5) defines pp(0), the excess dec hole density 1s

B = ApQS (cospyXeosR g)eap (=¥ Ko ), (BT)

where K:'mn = (/o) +8 +& (B18)
xmnr.: (.S!Hﬁmi"(llﬂQ’CY(Bm#e‘ < Lfﬂﬂ) (Blg)
A=4bc, (B20)

and Ly, is glven by Eq. (111). This value of the
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excess hoJ{e density agrees with that given by
Shockley.

The infinite s case 1s similar to the finite s
case, and we get

pr o) = /18 n"‘/g "")n%. (mn)_'(sin rrmB'«'j)G-‘h "'nC“fj?/\ exP(‘K,;m ”")(821)
odd

K;f = (D) 4 gimB )+ wnCY (B22)
mn

The input admittance to the p-n juncllon 1s
calculated by finding the total current in the x
direction at the x=0 plane and dividing by the ac
voltege v; applied at this plane. The current density
results fTfom the homogeneous form of Eq. (14) and from
Eqs. (Bl4) and (B15). To get the total current we
integrate over the observation coordinates at the x20
plane. With a constant source function p,(0)

0), Eq.
(B6), at the x=20 plane, the current in th& x direction
is

L)

Y=0

B.CBLC
I’i'"mo“'?@’V"‘%L!ff”‘ﬁ%xa""{.‘f‘\d%d‘ﬂ‘dff” (B24)

Y10 =0

where u is the mobility

,u-0$/kT, (B25)

and the symbols p}, vy, G, and G % are glven by Eqgs.
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(B7), (B2), (109) and {114) respectively; the symbols
q, k, and T are defined after Eq. (Bl); and D is

defined after Eq. (12). .
For finite s the expression for aﬁaéﬁain‘zfr is

-1

3%‘3%: z-pzu,:nFMN“")FMN[r) Kican Fpaw: (B26)

| (3
Yzo

Putting it into Eq. (B23) and defining the input
admittance at the xa0 plane as

Yl.o=1v7| (B27)

ve get Y\, TAUGAE Vo Kimn b,  (228)

whers A, ¥ ., L,}1 s Kigmns £ , 8nd py are defined by
Egs. (B20),™ %1970 (1¥9%) 1112), (828) and (B7)
respectively.

To separate Y into its real and imaginary parts,
Kkmn is sc separated, Let

TRV
K = (P Hi) (B29)
where H 18 any complex gquantity and the subseripts r
and 1 stand for real and ilmaglnary parts respectively:
then

Kmn

J Y . , v
K =2 E{LUHE < H]) sy S5l WD 20, 3 (330)

Using Eq. (B30), Eq. (B28) becomes
2 ]’/L

- z 4 22\
V0o =2 A 3 o Lo (LG * 0 0,05
+ (‘[( kI?"mn +“)LD£)'/1_ KI:'mn }‘IL}
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where Kyyn is defined by Eq. (B18) and the other
symbols are defined after Eq. (B28). This is the
expressiue for admittance which was derlived by
Shockley.

In the infinite s case the Iinput admlttance is

Vol 64T ARG R E, K /e (B32)

odd

With the real and imaginsry parts shown explicitly,
Eq. (B32) becomes

Y I =644z’ /x;APZhnn) {[(K nw“‘)v" (B33)

3 & 2
o0 ‘. oo
+ K hn] +¢[( D ) mn] }’
where and K i, are given by Eqs. (B25),
(117) and (5555 respectTvelx and

A™ = BC. (B}l-l-)
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